4,468 research outputs found

    Stellar Winds on the Main-Sequence II: the Evolution of Rotation and Winds

    Full text link
    Aims: We study the evolution of stellar rotation and wind properties for low-mass main-sequence stars. Our aim is to use rotational evolution models to constrain the mass loss rates in stellar winds and to predict how their properties evolve with time on the main-sequence. Methods: We construct a rotational evolution model that is driven by observed rotational distributions of young stellar clusters. Fitting the free parameters in our model allows us to predict how wind mass loss rate depends on stellar mass, radius, and rotation. We couple the results to the wind model developed in Paper I of this series to predict how wind properties evolve on the main-sequence. Results: We estimate that wind mass loss rate scales with stellar parameters as M˙⋆∝R⋆2Ω⋆1.33M⋆−3.36\dot{M}_\star \propto R_\star^2 \Omega_\star^{1.33} M_\star^{-3.36}. We estimate that at young ages, the solar wind likely had a mass loss rate that is an order of magnitude higher than that of the current solar wind. This leads to the wind having a higher density at younger ages; however, the magnitude of this change depends strongly on how we scale wind temperature. Due to the spread in rotation rates, young stars show a large range of wind properties at a given age. This spread in wind properties disappears as the stars age. Conclusions: There is a large uncertainty in our knowledge of the evolution of stellar winds on the main-sequence, due both to our lack of knowledge of stellar winds and the large spread in rotation rates at young ages. Given the sensitivity of planetary atmospheres to stellar wind and radiation conditions, these uncertainties can be significant for our understanding of the evolution of planetary environments.Comment: 26 pages, 14 figures, 2 tables, to be published in A&

    Stellar Winds on the Main-Sequence I: Wind Model

    Full text link
    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run a grid of 1200 wind models to derive relations for the wind properties as a function of stellar mass, radius, and wind temperature. Using these results, we explore how wind properties depend on stellar mass and rotation. Conclusions: Based on our two assumptions about the scaling of the wind temperature, we argue that there is still significant uncertainty in how these properties should be determined. Resolution of this uncertainty will probably require both the application of solar wind physics to other stars and detailed observational constraints on the properties of stellar winds. In the final section of this paper, we give step by step instructions for how to apply our results to calculate the stellar wind conditions far from the stellar surface.Comment: 24 pages, 13 figures, 2 tables, Accepted for publication in A&

    Stellar activity and planetary atmosphere evolution in tight binary star systems

    Full text link
    Context. In tight binary star systems, tidal interactions can significantly influence the rotational and orbital evolution of both stars, and therefore their activity evolution. This can have strong effects on the atmospheric evolution of planets that are orbiting the two stars. Aims. In this paper, we aim to study the evolution of stellar rotation and of X-ray and ultraviolet (XUV) radiation in tight binary systems consisting of two solar mass stars and use our results to study planetary atmosphere evolution in the habitable zones of these systems. Methods. We have applied a rotation model developed for single stars to binary systems, taking into account the effects of tidal interactions on the rotational and orbital evolution of both stars. We used empirical rotation-activity relations to predict XUV evolution tracks for the stars, which we used to model hydrodynamic escape of hydrogen dominated atmospheres. Results. When significant, tidal interactions increase the total amount of XUV energy emitted, and in the most extreme cases by up to factor of ∌\sim50. We find that in the systems that we study, habitable zone planets with masses of 1~M⊕_\oplus can lose huge hydrogen atmospheres due to the extended high levels of XUV emission, and the time that is needed to lose these atmospheres depends on the binary orbital separation.For some orbital separations, and when the stars are born as rapid rotators, it is also possible for tidal interactions to protect atmospheres from erosion by quickly spinning down the stars. For very small orbital separations, the loss of orbital angular momentum by stellar winds causes the two stars to merge. We suggest that the merging of the two stars could cause previously frozen planets to become habitable due to the habitable zone boundaries moving outwards.Comment: Accepted for publication by A&

    Do left hand reaction time advantages depend on localising unpredictable targets?

    Get PDF
    Asymmetries in hand movements have routinely been attributed to properties of the two cerebral hemispheres. In right-handed participants, the non-dominant left hand tends to have shorter reaction times, with the dominant right hand achieving shorter movement durations as well as higher peak velocities. The root cause of the surprising left hand RT effect has been debated, largely in the context of right hemisphere specialisation in attention, visuospatial abilities, or “premotor” processes. Mieschke et al. (Brain Cognit 45:1, 2001) and BarthĂ©lĂ©my and Boulinguez ( Behav Brain Res 133:1, 2002) both tried to dissociate “premotor” processes explaining the left hand RT advantage, using reaching paradigms where at least one condition required target detection, but no visually guided aiming movement. Unfortunately, the studies obtained conflicting results and conclusions. In the present study, we attempted to re-examine this kind of paradigm with methodological improvements, such as using a task with higher visuospatial demands. Our results demonstrate that whilst RTs are longer as movement complexity increases across three conditions, the left hand RT advantage is present across all conditions—and no significant interaction between hand and condition was found. No significant hand differences were found in peak velocity or duration. These results suggest that the left hand RT advantage cannot be due to movement planning advantages of the right hemisphere, and instead should be attributed to sustained attention/vigilance lateralisation to the right cerebral hemisphere

    Concordant cues in faces and voices: testing the backup signal hypothesis

    Get PDF
    Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis

    Results of an aqueous source term model for a radiological risk assessment of the Drigg LLW Site, U.K.

    Get PDF
    A radionuclide source term model has been developed which simulates the biogeochemical evolution of the Drigg low level waste (LLW) disposal site. The DRINK (DRIgg Near field Kinetic) model provides data regarding radionuclide concentrations in groundwater over a period of 100,000 years, which are used as input to assessment calculations for a groundwater pathway. The DRINK model also provides input to human intrusion and gaseous assessment calculations through simulation of the solid radionuclide inventory. These calculations are being used to support the Drigg post closure safety case. The DRINK model considers the coupled interaction of the effects of fluid flow, microbiology, corrosion, chemical reaction, sorption and radioactive decay. It represents the first direct use of a mechanistic reaction-transport model in risk assessment calculations
    • 

    corecore